STRATEGIC INVENTORY MANAGEMENT

Flashed by Flashiness.com

Prepared By: Chirag Kalaria

INDEX

- Introduction to Inventory Management
- Inventory Components
- Drivers of Inventory
- Measuring Inventory Performance

CONTINUE...

- Inventory Classifications
- The Newspaper Boy Problem
- Forecasting
- Inventory Planning Strategies
- Striking the Price-Quantity Balance

WHY DO WE NEED INVENTORIES?

WHY DO WE NEED INVENTORIES?

- Safety Stock
- Cycle Stock / Lot-Size Stock
- Transportation (Pipeline) Stock
- Pre-Build Stocks
- Hedging Stocks

Inventory is a necessary evil !

- Even in a perfectly run business
- Safety stocks are needed because customer demand cannot be forecast accurately, or because of unreliable supply
- Cycle stocks are needed because manufacturing cannot produce small runs economically
- Pre-Building is needed because manufacturing has capacity limitations

Inventory decouples portions of supply chain, allowing them to work efficiently

COST OF INVENTORY

Holding a lot of stock allows you to service your customers reliably, so why reduce it?

Inventory Components

Finished goods inventory is made up of four components:

CYCLE STOCK

Cycle Stock is the active inventory component which covers customer demand between replenishment cycles.

TRANSIT STOCK

Transit stock consists of products moving from one stocking location to the other

SAFETY STOCK

Safety stock protects against uncertainty in customer demand and supply chain variations.

INVENTORY BUILD

Inventory Build is inventory required to maintain customer service in addition to normal requirements (safety stock, transit stock and cycle stock) as a result of upcoming demand that exceeds upcoming capacity over a limited period of time.

REORDER MECHANISM

 For near stable demand, two reorder mechanisms are mostly used. Where a forecast exists, forecast quantity replaces the average demand

Fix Periodic Review – Reorder Time

 Order a variable quantity "x" such that maximum inventory limited to "S" when a prefixed time "t" has been reached

Time

Fix Order Quantity - Reorder Point

 Order fixed amount "Q" when a preset reorder level "s" has been reached

WHAT DRIVES INVENTROY?

THE ROLE OF INFORMATION -BULL - WHIP EFFECT

MEASURING INVENTROY PERFORMANCE

Service Levels

Cycle service level

- > The % of cycles where we serviced all orders for a material
- Cycle Service level of 90% means that in a given cycle there is a stock out probability of 10%
- > It also means that out of N cycles there will be 10% with stock outs
- > Number of stock out units is not relevant in this type of service level

• Order Fill rate

- > The percentage of ordered quantity that was serviced in time
- Service level of 90% means 90% demand fulfilled from stock on hand
- Fill rate measures number of stock out units
- > All cycles may have stock outs and still achieve fill rate of 90%

Eg. of Cycle Service Level and Order Fill Rate

Sr No	Order Placed	Order Serviced	Cycle Service Level (In %)	Order Fill Rate
1	50	50	1	100
2	30	30	1	100
3	65	50	0	77
4	55	50	0	91
5	35	35	1	100
6	40	40	1	100
7	50	50	1	100
8	45	45	1	100
9	OVERALL PERFORMANCE		75%	96%

MEASURING INVENTROY PERFORMANCE

Inventory Levels

- Days of Supply (DOS)
- If no new supplies are provided, till how many days will the existing stocks last

<u>Inventory DOS = Stock on Hand / Average Daily</u> <u>Demand</u>

- There is also a measure 'Inventory Turnover' which is reverse of DOS
- Inventory Turns measures the number of times material is turned over in an year
- Inventory Turn = Annual Demand / Stock on Hand

Eg. of Days of Supply and Cost of Working Capital

DAYS OF SUPPLY				
SKU	Quantity in Stock	Monthly Demand	Daily Demand	Days of Supply (DOS)
	А	В	C=B/30	D=A/C
А	40	30	1	40
В	90	40	1.33	67.67
С	20	50	1.67	11.98
D	150	120	4	119.65

INVENTORY TURNOVER RATIO				
SKU	Quantity in Stock	Monthly Demand	Annual Demand	Inventory Turnover
	A	В	C=B*12	D=C/A
А	40	30	360	9
В	90	40	480	5.33
С	20	50	600	30
D	150	120	1440	9.6

ANALYSING INVENTROY PERFORMANCE

Periodic Performance comparison

XYZ Inventory (Plant 3)

ANALYSING INVENTROY PERFORMANCE

TRIPLE PLAY CHART – EXAMPLE 1

Purchases 📕 Issues 🕂 Inventory level

ANALYSING INVENTROY PERFORMANCE

TRIPLE PLAY CHART – EXAMPLE 2

Purchases 📩 Issues 斗 Inventory levels

INVENTORY MANAGEMENT IS A TIGHT BALANCE

HIGHER STOCKS WILL IMPROVE YOUR CUSTOMER SERVICES & LESSER STOCKS LEADS TO STOCKOUTS AND HENCE CUSTOMER SERVICE LEVEL GOES DOWN

CUSTOMER CENTRICITY

IS CUSTOMER AT THE CENTER OF SUPPLY CHAIN DESIGN???

COST OF LOST SALES (COLS)

Organizations need to decide the customer service levels based on the Cost of Lost sales/ Cost of Inventory and their strategic needs

INVENTORY MANAGEMENT IS ABOUT BALANCING..

... Cost of Inventory Holding with the costs of lost sales

ABC Classification

ABC analysis is an application of the Pareto principle and is a simple, yet effective tool used to classify and manage inventories

Items (SKUs; Part #s)

<u>A</u>	<u>B</u>	<u>C</u>
20	30	50
80	15	5
	<u>A</u> 20 80	<u>A</u> <u>B</u> 20 30 80 15

FMS/FSN Classification

 FMS categorization is based on how frequently an item is being ordered

- Fast: Being used very frequently
- Medium: Being used intermittently
- Slow: Used very infrequently

 This is sometimes also referred to as Runner, Repeater, Stranger

Sample FMS Categorization

- F : SKUs with more than 150 Orders/year
- M : SKUs with more than 25 Orders/year but less than 150 Orders/Year
- S : SKUs with more than 5 Orders/year but less than 25 Orders/Year

VED Classification

- VED categorization is based on how critical a component is for the customer
 - Vital: Of critical importance for the customer/production
 - Essential: Being used intermittently
 - Desirable: Used very infrequently

An example of mixed classification developed for a hospital

A mixed classification used at a foods company

A- HIGH CONTRIBUTION SKUs Any SKU that contributes 4 % or more to the total location dispatches in a month

B – LOW CONTRIBUTION SKUs • SKU that contributes less than 4 % of the total location dispatches but more than minimum run size per month

C – VERY LOW CONTRIBUTION SKUs

 SKU that has average monthly volume less than minimum run size

INVENTORY PLANNING STRATEGIES

<u>Multiple approaches to planning inventories are</u> possible :

- Push based = The anticipated quantity that customers will order at some time in the future (forecast-based)
- Pull based = A quantity that equals the difference between a fixed target inventory and current inventory (replenishmentbased)
- Make-to-order = The exact quantity the customer orders to be made after the customer order

While a Pull based strategy is more customer centric and preferred for in-factory (or nearby) operations, Forecast based planning is needed for scenarios with long lead times and/or intermittent supplies (due to lot sizing/truck load building).

3 levels of planning

- Annual/Quarterly
- Monthly/Weekly
- Weekly/Daily

What decisions should each of these drives?

Key components of Integrated Supply Chain Planning

Sources of Demand

Quite often demands from different sources needs to be treated differently. E.g sales channels, geographies, Emergency/normal needs

Planning Product

Planning

Horizon

Planning

Bucket

The lower most product entity that is being planned for. Typically, Annual / quarterly planning can be done at higher levels. For execution the last level of details are required

Planning bucket is the smallest period for which forecast/demand is being estimated. This should ideally remain same across the supply chain.

The complete period for which the planning is being done. Typically determined by the longest production/procurement lead time.

Building Blocks of Planning Process

GRANULARITY - WHAT IS THE BEST PLANNING GRANULARITY?

A ROLLING PLAN

THE NEWSPAAPER BOY PROBLEM

FORECASTING

If you forecast, you can be wrong.

But, if you do not forecast, you will always be wrong

WHERE DO WE USE FORECASTS?

LEVEL OF FORECAST	TYPICAL PURPOSE	
Five – Year Forecast	Strategic Planning Long Range Planning	
Annual Forecasts	Brand marketing plans Cash planning, revenues, profits, interest rates Sales territory sizing and quota Manpower planning Short term capacity planning	
Monthly Forecasts	Production planning Purchasing	
Weekly Forecasts	Production scheduling Procurement, production and inventory Deployment	

OPERATION FORECASTING

FORECASTING TECHNIQUES

Forecasting Techniques — Time Series

MOVING AVERAGES METHOD

- Moving average of last 'x' observations used to forecast for the next period
- Two types of moving average methods
 Simple moving average
 Weighted moving average
- Frequently used, due to Ease-of-use
 Results however are not very reliable
 Provides good results in stationary conditions; Poor ability to forecast under pattern change conditions
 - Lags in case of trend

INVENTORY MODELS

- Deterministic models
 - The Economic Order Quantity (EOQ) model
 - Sensitivity analysis
 - A price-break Model
- Probabilistic Inventory models
 - Single-period inventory models
 - A fixed order quantity model
 - A fixed time period model

Inventory Decision Issues

- Demand of various items
- Money tied up in the inventory
- Cost of storage space
- Insurance expense risk of fire, theft, damage
- Order processing costs
- Loss of profit due to stock outs

Inventory Decision Questions

How Much? When?

THE EOQ MODEL

The EOQ Model Cost Curves

order Q*

EOQ Cost Model

- D annual demand
- Q order quantity
- S cost of placing order
- H annual per-unit holding cost

Ordering cost = SD/Q Holding cost = HQ/2

Total cost = SD/Q + HQ/2

Example

Example 1: R & B beverage company has a soft drink product that has a constant annual demand rate of 3600 cases. A case of the soft drink costs R & B \$3. Ordering costs are \$20 per order and holding costs are 25% of the value of the inventory. R & B has 250 working days per year, and the lead time is 5 days. Identify the following aspects of the inventory policy:

Calculate

- a. Economic order quantity
- b. Reorder point
- c. Total annual cost

THANK YOU